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Abstract: Today’s product development projects require collaboration across 
different engineering domains in order to be successful. For instance, a project 
may require software engineers to collaborate with electrical engineers and 
mechanical engineers. Even though engineers of different domains focus on 
different parts of the system-under-development, these parts typically cannot 
work in isolation. Therefore, coordination among these engineers is necessary 
to ensure that the individual parts of a system work together well when 
combined. The lack of such coordination leads to inconsistencies and hence the 
inability to integrate individual parts of the system. Even though approaches for 
finding such inconsistencies have been developed, it has yet to be shown 
whether the presentation of inconsistencies is of actual value to engineers. In 
this paper, we present the results of a practical experiment that assessed the 
effects of the presence of inconsistent information during development. The 
results indicate that specific feedback about inconsistency (when performing 
changes) leads to better engineering results than merely presenting general 
information about system interconnections. 
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1 Introduction 

During the development of technical products, knowledge from various domains is 
combined. For each domain, typically several models exist which represent the aspects of 
the product that are of direct relevance for the domain. However, these aspects cannot be 
seen in isolation as the combination of all models of all domains describe the relevant 
product properties, and individual pieces of information may be used by engineers from 
different domains in their respective models. It is therefore crucial that the different 
models, when combined, form a system that is free of contradictions (i.e., 
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inconsistencies). The introduction of such inconsistencies is fostered by the nature of 
modern development practices: time-to-market should be minimised by developing 
different aspects of the product concurrently rather than sequentially (e.g., source code is 
developed by software developers while at the same time civil engineers calculate the 
properties of physical components of a system). 

Models share information about the product in the form of product properties. The 
term property as used in this paper was defined by Hubka and Eder (1996, p.108f) as 
follows: 

“Properties (attributes) of the technical systems are all those features which 
belong substantially to the object – the object owns the property (it is proper to 
the object). The value of the property represents the measure of the property 
(size, condition, form of embodiment) in the concrete case. The value can be 
indicated quantitatively (x m/s – number and unit of measure) or only 
qualitatively (large, small).” 

In the course of a concurrent development process, engineers tend to modify product 
properties. Inconsistencies arise when such changes affect product properties that are 
relevant to multiple domains and the properties are not correctly propagated to all models 
(and their subsequent models) that depend on them. 

According to Nuseibeh et al. (2001, p.172), an inconsistency occurs in “any situation 
in which two descriptions do not obey some relationship that is prescribed to hold 
between them”, for example, when a property has instances with different values 
assigned (i.e., different models that are both relying on the mass of a part use different 
values to model this property). 

When inconsistencies arise, domain models may not combine correctly to represent 
the desired product, making the product inherently flawed. The faster inconsistencies are 
detected, the sooner and, intuitively, the more economically they can be resolved. Thus, 
early inconsistency identification should be an effective means to increase engineering 
efficiency – leading to accelerated system design. Immediate identification of 
inconsistencies is state of the art in individual software platforms (Nuseibeh et al., 2001). 
Examples include computer-aided software engineering (CASE) tools which are able to 
identify mistakes in code, such as undefined variables. 

1.1 Research questions 

This paper discusses the results of a practical experiment in which participants were 
provided with the model of a mechatronic system (i.e., a robot arm), relevant 
inconsistency information, and general system interdependency visualisations. The 
experiment built upon the results of Keller et al. (2006) and Ghoniem et al. (2005) to 
investigate whether node-link graphs or matrix representation are better for presenting 
system interconnections to engineers along with the information when inconsistencies 
occur. The hypothesis is that the information about the occurrence of an inconsistency 
supported through matrix representation of the system results in a shorter amount of time 
necessary to resolve inconsistencies than the usage of node-link representation of the 
system. As the respective research indicates (Keller et al., 2006; Ghoniem et al., 2005) 
the size of the system along with its density are of influence. In the present analysis, no 
variation in this direction was performed. 
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1.2 Paper outline 

The next section of this paper provides background information regarding consistency 
checking and the role of inconsistencies. The third section (method) includes a feasibility 
study, along with an introduction to DesignSpace as a tool to record and communicate 
inconsistencies and shows an ensuing experiment linking the usage of inconsistency 
information to design efficiency, inconsistencies, and existing approaches to integrated 
mechatronic design. The fourth section explains the experiment setup. The fifth section 
(results section) describes, and reports the results of the practical experiment in which 
DesignSpace was used to present inconsistencies. It also discusses the findings and 
outlines further applications and improvements planned. Finally, the sixth section 
concludes the paper. 

2 Consistency checks: concepts and approaches/methods 

2.1 Concepts and approaches/methods 

Inconsistencies are part of the iterative nature of product development (Ballard, 2000; 
Maier et al., 2014; Leon et al., 2013; Wynn et al., 2007). Iteration and redesign can have 
different purposes and goals (Safoutin, 2003; Wynn et al., 2007). A critical reason for 
iteration and redesign is the difference between current solution and requirements of the 
final product (Follmer et al., 2012), which constitutes an inconsistency between current 
state and goal. Early identification of inconsistencies that require iteration or redesign is 
crucial to reducing their effects on cost (Ehrlenspiel et al., 2007). 

Prior to inconsistency identification, a basis for comparing the different models must 
be defined. An approach rooted in software development is the systems modeling 
language (SysML), which is applied, for example, in systems engineering (Friedenthal  
et al., 2014). The specific connection of models from different domains with shared 
properties is at the core of mechatronic system models (Follmer et al., 2011, 2012). 
Functions can serve as a very specific type of property for the connection across 
engineering domains (Lucero et al., 2014). 

Consistency checking during the concept development of mechatronic design models 
aims to identify inconsistencies early in order to accelerate the design process 
(Hehenberger et al., 2010) and reduce the cost of changes (Boehm, 1984; Ehrlenspiel  
et al., 2007). For these considerations it is not only necessary to look at the properties 
causing the inconsistency, but also at the other properties they are connected to. 
Propagation of a change can have considerable consequences, as it can result in an 
avalanche of ensuing changes (Jarratt et al., 2011). 

2.2 Benchmark of tools and methods 

Several approaches address consistency as part of model-based system engineering. 
Moser and Biffl (2012) used their engineering knowledge base (EKB) as a framework to 
store engineering knowledge for use across multidisciplinary engineering projects. This 
engineering knowledge is stored in web ontology language (OWL) ontologies to facilitate 
data exchange between different engineering tools. The EKB consists of six steps: 



   

 

   

   
 

   

   

 

   

    The practical use of inconsistency information in engineering design tasks 175    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

1 extraction of tool data 

2 storage of extracted tool data 

3 description of domain knowledge 

4 description of tool knowledge 

5 mapping of tool knowledge to domain knowledge 

6 usage of EKB 

The EKB allows for the inclusion of automated consistency checks regarding syntax and 
plausibility for semantic correctness. Such checks must be defined by human experts. The 
interfaces for the experts are the tools of their respective domains, with the results also 
being retransformed for use in the respective tools. 

Coatanéa et al. (2014) presented a methodology that identifies contradictions 
(inconsistencies) within models through the creation of a graph of dependencies of 
variables. This graph can be analysed with respect to the dimensions of the variables 
thereby identifying variables that cause contradictions. Similarly, Qamar and Paredis 
(2012) suggested a dependency network as a feasible approach to identifying and 
avoiding as many inconsistencies as possible. An approach using graphical representation 
for different models, where the graphs undergo pattern recognition in order to identify 
inconsistencies, was also employed by Herczig et al. (2014). 

The design compiler 43 (Böhnke et al., 2009) represents a different paradigm. It uses 
UML as a general-purpose modelling language to create design languages for specific 
purposes. The language is created by analysis of the purpose (e.g., aircraft or satellite 
design), which leads to a vocabulary in the form of a class diagram. Application of the 
vocabulary through rules instantiates these classes, and the design compiler creates 
models based on these rules. This approach requires a significantly larger effort upfront 
for creating the vocabulary that represents the design space. However, once this 
vocabulary exists, all possible solutions within it are available within a fraction of the 
time needed by traditional development approaches. Thus, the approach using design 
compiler 43 supports high variability, especially in areas where the design space is 
already well known. 

DesignSpace provides a flexible engineering environment for efficient knowledge 
sharing. Various tools and approaches exist that provide parts of DesignSpace’s 
functionality, such as artefact (property, model, value, …) linking and versioning. 
However, existing tools fail in combining key features of DesignSpace: the integration of 
arbitrary development artefacts, traceability across artifacts, change impact analysis, or 
fine-grained versioning. For example, IBM RELM, available at http://www-03.ibm.com/ 
software/products/en/ratiengilifemana (accessed 16 December 2015), allows arbitrary 
artefacts to be stored, linked, and queried for reasoning. It is based on the Open Services 
for Lifecycle Collaboration (OSLC), available at http://open-services.net/. OSLC is a set 
of specifications that enable the integration of engineering lifecycle tools. Based on a 
core specification, domain-specific specifications (e.g., configuration management, 
quality management, requirements management and architecture management) are built 
on top. OSLC integrates tools based on RDF and HTTP, allows tracing among RDF 
resources, modelling as so called resource shapes, and not only data integration but also 
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user interface integration of different tools. However, IBM RELM generally does not 
provide the fine-grained versioning of DesignSpace. 

All approaches that collect engineering knowledge that can in turn be used for 
analysis and inconsistency information require engineering information input. This input 
must come from the designers, who are both ‘contributors and beneficiaries of the 
system’ (Alavi and Leidner, 1999) and must accept both roles. Collaboration through the 
combination of models from different engineering domains therefore not only requires 
traditional designers, but also an expert who connects the respective disciplines, that is, a 
system architect (Komoto and Tomiyama, 2012). These observations from literature lead 
us to the conclusion that inconsistency information is a crucial part of efficient 
collaborative design. However, its proper representation is the key to its successful usage. 

3 Method 

As part of the experiment, the participants were provided with a model of a  
cyber-physical system (i.e., a robot arm). The experiment addressed the role of a designer 
as the recipient of inconsistency information and evaluated different visualisations of 
model interdependencies. Inconsistency information was provided by a software 
prototype called DesignSpace. General system interdependencies were visualised by 
either a node-link graph or a design structure matrix. 

The participants in the experiment were mostly mechatronics students from Johannes 
Kepler University Linz (JKU). They were asked to perform a defined engineering change 
task in the model and to repair any inconsistencies that arise because of performed 
changes (i.e., that were caused either by the initial change or any subsequent change that 
was made to propagate the initial change). The model consisted of four sub-models, each 
of which modelling different aspects of the overall system. These sub-models were not 
directly connected by existing engineering tools but by means of the DesignSpace 
prototype. The initial model provided to students was free of inconsistencies. 

In this section we address a feasibility study of inconsistency information, introduce 
the DesignSpace tool to record and communicate inconsistencies and present a design 
experiment that related design efficiency to the usage of certain representations of 
inconsistencies. 

3.1 Pilot survey among engineers regarding inconsistency information 

At a professional practitioner training course at the University of Applied Sciences of 
Upper Austria, we conducted a survey to: 

1 assert the readiness of designers to be informed about existing inconsistencies in 
their designs 

2 determine how much time they would be willing to invest in a technology that 
indicates inconsistencies. 

One of the courses as part of this training addressed systems engineering in practice. All 
67 participants in this course were employed by companies that defined themselves as 
mechatronic companies. Of these 67 people, 61 identified a benefit of consistency 
information, one identified no benefit and six did not respond. 
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The majority (60) stated that they use or would use a tool that helps them to identify 
inconsistencies in their products if its application requires a reasonable small amount of 
time. As reasonable they marked 1 up to 4 hours of work per average 40-hour work week. 
The results of this survey indicated that improved consistency checking is a need in 
industry. 

The commitment of 1–4 hours is a significant amount of time. However, this  
front-loading effort would significantly reduce errors due to inconsistencies in later 
design phases, which accrue significantly higher costs, than the time effort needed in the 
early design phases to implement the consistency network (Ehrlenspiel et al., 2007). As 
inconsistencies commonly occur during changes, such information should be an 
important part of change management. The opportunity costs (what has to be sacrificed in 
order to address the inconsistency information) are difficult to estimate. Currently, we 
expect the time to be added to the early design phases, resulting in increased up-front 
effort. Nevertheless, due to the better handling of changes and lower number of errors to 
be fixed in the later design phases, the later phases should take significantly less time, 
resulting in a net benefit of the inconsistency information. Such considerations are part of 
future research. 

3.2 Procedure and material 

Tasks and support measures and order were assigned randomly to participants by drawing 
without returning in order to achieve equal distribution and minimise selection bias. The 
participants had to perform the respective tasks individually. 

Two slightly different experimental protocols were used. The first pilot group 
received an explanation of both experiments at the very beginning. For the second group, 
the protocol was different as general information was provided from the beginning, but 
specific information (i.e., the task description) was provided immediately before each of 
the two experiments, along with oral information including a questionnaire to assess their 
task comprehension. This questionnaire was discussed with the supervisors of the 
experiment to ensure that the participants understood the tasks correctly. The protocol 
changes between the first and the second group were made because feedback from the 
first group indicated that the task was insufficiently clear. For example, one participant 
stated that the initial amount of information was overwhelming. 

The independent variables were the visual support measure in the form of a matrix or 
graph representation of the overall system, along with the respective time ratio these 
representations were used in comparison with the general inconsistency information and 
the detailed inconsistency information provided by DesignSpace. The following list 
presents all the dependent variables measured in the experiment: 

1 duration of problem solving in minutes 

2 number of inconsistency flags present within DesignSpace at the end of the provide 
time for completion 

3 number or remaining steps for completion of the task after 30 minutes 

4 number of errors made during the problem solving 

5 usage ratio of the respective means to identify inconsistencies. 
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The first four variables were measured directly after an individual participant reached the 
end of the task either through completion or time expiration. The time was stopped once 
the task was completed or the time ran out. DesignSpace showed the number of 
unresolved inconsistencies. The number of overall changes necessary was known and 
compared to the number of changes performed. The errors (false values entered) were 
identified through deviation to the known solution. The usage ratio was identified 
through video analysis of each of the individual participants. The first four variables were 
used to calculate a combined time value which served as an indication of the quality of 
the performance of the participant. The usage ratio was used as an indication for the 
application of the support measures. The respective effects of the independent variables 
on the dependent variables were evaluated statistically with correlation coefficients. 

Task fulfilment was video recorded using CamStudio Recorder v2.7.2. Not recorded 
were the preparations. The recorded dependent variables were used to evaluate the 
performance of the individuals. The basic measure to evaluate the participants was the 
timeframe of 30 minutes allocated for task completion. For the participants who were not 
able to finish the task, the flags, errors and remaining steps were added as a time penalty. 
The reference for a standard penalty was the overall time allocated divided by the number 
of steps (i.e., 30/17). An outstanding change, a flag still active, and an error had penalty 
factors of 1, 0.5 and 2, respectively, reflecting their severities. A property value that was 
set neither to its initial value nor to the value calculated in another file was considered an 
error. The after effects of an error were not considered to be additional errors. Errors 
typically occurred when participants either inserted the value of an incorrect property or 
guessed rather than used values from existing files. 

4 Experiment setup 

The purpose of the experiment was to gain further insights into how designers can take 
advantage of inconsistency information. In addition, the experiment served as a means of 
identifying potential areas of further improvement in communicating inconsistency 
information. 

The goal of the experiment was to identify which of the two different representations 
of inconsistencies provided better results. Consequently we designed the experiment to 
provide an overall value measuring the performance of the participants in measuring the 
time needed for finishing the task with added penalties for errors and unfinished steps, 
along with an indication for the usage of the provided support measure which was 
identified through video analysis. 

4.1 Participants 

The experiment was supported by 22 participants who volunteered from the student body 
and staff of the Institute of Mechatronic Design and Production and the Institute for 
Software Systems Engineering at JKU Linz. All of the participants had a technical 
background in the fields of mechatronics (18), computer science (2), mechanical 
engineering (1) and material engineering (1) pursuing their bachelor (8), master (5) or 
PhD (9) degree. The participants were not compensated for their participation. None of 
the volunteers were female. All personal information obtained (including age, highest 
level of education, university credits, work experience and particular knowledge of 
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engineering tools) was anonymised. None of the personal information obtained showed 
any significant correlation with the results of the experiment. 

4.2 Task 

The task the participants were asked to perform was about adapting the grasping distance 
of a robot arm in an engineering model – and the help they received while tackling it. 
Figure 1 shows a schematic of the robot under consideration. The scenario the 
participants of the experiment were presented with was described as follows: an 
important customer wants to buy robots from our company, but the current specifications 
within our existing portfolio do not fit his requirements. However, there is a robot which 
comes close and could be adapted accordingly. The person usually in charge of this 
specific robot design is currently not available and the participant has to adapt the 
grasping distance of this specific robot according to the requirements of the customer and 
apply the necessary ensuing changes so that the robot is functional. The results have to be 
available within the next 30 minutes. 

Figure 1 Schematic of the robot model used for the design experiment 

 

The change of the grasping distance, among other properties has effects on the length of 
the arms, the weight of the robot, the size of the drives at the joints, the power supply and 
on how robust the foundation has to be. The respective equations and corresponding 
calculations were part of the Excel files provided for the participants. Excel stands as 
representative for other used tools in mechatronic design (e.g., MATLAB®, SysML®, 
Modelica®, 3D-CAD) as it is widely used in industry and it is fair to assume that it does 
not require any special training for engineers in its usage. 

The presented scenario requires changes to be performed which result in 
inconsistencies. The research aim is to identify which of the presented methods to 
represent the inconsistencies are more efficient to reach the goal to eliminate them. The 
collaboration aspects in the experiment address the combination of the different 
disciplines included in the field of mechatronics and sequential collaboration. Both are a 
necessary foundation for concurrent collaboration. 

4.3 Experiment tool 

The cloud-based DesignSpace (Demuth et al., 2015) was used in the experiment because 
it enables engineers to share knowledge and record interdependencies across engineering 
tool boundaries – as depicted in Figure 2. 
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Figure 2 Overview of DesignSpace (see online version for colours) 

 

DesignSpace makes development artefacts publicly available such that cross-tool 
interdependencies can be established. Hence, it enriches the knowledge available in 
development tools with how this knowledge is interrelated. DesignSpace provides three 
types of services: data, engineering, and collaboration services. 

• Data services: a central feature of DesignSpace is that it integrates the knowledge of 
development artefacts by continuously mirroring the artefacts. Whenever an artefact 
is changed by an engineer, this change is immediately and automatically propagated 
to DesignSpace and hence visible to others. The knowledge in DesignSpace thus 
reflects the current status of the system under development at all times. Note that the 
actual integration of individual artefacts is application-specific. This results in 
different domain-specific models (i.e., metamodels or ontologies). However, 
DesignSpace does not hard-code a specific metamodel or ontology; these may vary 
and can be changed like any other artefacts. In order to support this, DesignSpace 
offers an editor/visualisation tool called the WorkBench, which provides  
tool-independent visualisation and editing services to let engineers view and 
manipulate artefacts at will. This is not only useful for linking artefacts but also 
useful for navigation and visualisation to engineers 

• Engineering services: in addition to representing and linking engineering knowledge, 
DesignSpace has the ability to detect inconsistencies through arbitrary user-definable 
constraints. For example, if a property derived from a calculation must be reused 
correctly in a drawing then this relationship can be effectively represented in form of 
an equality link that links these two artefacts. Another form of connection between 
properties is provided by a trace link, which indicates a general, unspecified 
dependency. The WorkBench provides the means to define such constraints, which 
are then verified by a consistency checker built into DesignSpace. The consistency 
checker reacts to changes and evaluates predefined constraints in a scalable manner – 
constraints that may range from simple equality constraints to more complex  
well-formedness rules across multiple artefacts. 

• Collaboration services: collaboration is at the heart of DesignSpace. At the very 
least, DesignSpace supports asynchronous collaboration, as it embodies a revision 
control system that tracks at a fine-grained level how engineering artefacts came to 
be (i.e., their revision histories). A developer must be able to first adapt artefacts in 
private and then deliberately decide to share changes. However, we omit a more 
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detailed discussion of the collaboration services because they were of very limited 
relevance for the experiment presented in this paper. 

4.4 Experimental setup 

The robot model was distributed across four different Excel files. The first model was the 
requirements model, which contained the stakeholder requirements and their desired 
values (requirements model, 12 properties). The second model contained the calculations 
of lengths and angles (kinematics model, nine properties). The third model contained the 
calculations of the accelerations necessary to fulfil the requirements (dynamics model,  
18 properties), and the fourth model contained the calculations of the resulting mass and 
power requirements of the robot (energy model, 43 properties). Output properties were 
indicated in pink and input properties in light green. For properties which were used both 
within a model and propagated to further models, both colour codes (pink and light 
green) were possible. 

The cells in the Excel files that contained values were not connected using Excel 
formulas, but rather by means of DesignSpace. The cells of an Excel file could be 
exported using a provided tool adapter (realised with an add-in and comments in Excel). 
As soon as a cell was annotated with a comment in a specific syntax, it was exported to 
DesignSpace with the given name, unit and data type. The integration of the Excel files 
into DesignSpace is schematically depicted in Figure 3. Step 1 indicates the creation of 
the models along with their connection to DesignSpace. In addition to the four models, 
the computation and the arbitrary model emphasise the possibility for extension of the 
models. 

After exporting all properties from the Excel files, the interdependencies were 
prepared for the experiment using WorkBench – a tool for editing and viewing the 
contents of DesignSpace. The interdependencies were realised as two different types of 
links: 

1 equality links, which indicate properties that must have the same value 

2 trace links, where properties are connected to each other, for example, by belonging 
to the same mathematical equation. 

These connections are indicated in the middle of Figure 3 (Step 2). The integration of the 
artefacts, along with their connection in DesignSpace, allows to form the METAMODEL 
(MM). Besides to the two types of links mentioned and used for the robot example, the 
design space allows for calculations with the artefacts and subscription to change 
notification. 

Once an artefact or a connection was included into DesignSpace, the respective 
engineering services (see Step 3 on the right side of Figure 3) for it were activated. Of the 
five mentioned engineering services, the consistency checker and the trace-based change 
notifier were used for the robot example. At all times, DesignSpace determined and 
visualised the state of the consistency of the established equality links, and issued an alert 
when changes affected a trace link. The other three services (refactoring and 
transformation, subscription-based change notifier and the syntax and semantics checker) 
were not used in the robot example. 
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Figure 3 Schematics of integration of robot example into DesignSpace (see online version  
for colours) 

 

In addition to the Excel files and DesignSpace, the supervisors of the experiment 
prepared two different visualisations of the interdependencies within the robot model: a 
node-link graph and a design structure matrix printed out on paper size A3. 

4.5 Experiment flow 

The experiment was carried out as follows. The participants of the experiments (the 
present robot experiment and another one regarding iteration) each had a pre-arranged 
appointment. First they had to sign a consent form. Second they had to choose the 
specific tasks they had to perform through an urn draw. Afterwards, they filled out an 
entry questionnaire regarding their age, gender, education level, etc. During this time, the 
experiment supervisor prepared the specific support measures and the experiment setting. 
Once the participants were finished with the questionnaire, they received the introductory 
information for the experiment. They had as much time as they wanted for studying this 
introductory information. Once they were satisfied with this information, they were asked 
to fill out a comprehension questionnaire, during which they were also allowed to ask 
questions. After the first experiment, a break of approximately 15 minutes was scheduled, 
during which the participants had to refrain from any outside contact. Following this 
break, the participants received the introductory information for the second experiment, 
again followed by a comprehension questionnaire during which it was again allowed to 
ask questions. After the second experiment, the participants had to fill out a feedback 
form and were questioned by the supervisor regarding their experience and opinion of the 
experiment, to evaluate possible hypothesis awareness. 
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Figure 4 DesignSpace information about trace links and inconsistency (see online version  
for colours) 

 

To perform the task, the participants received introductory material and one of the 
representations of the interdependencies. Half of the participants received a node-link 
graph and the other half a design structure matrix visualisation (Keller et al., 2006). The 
model was explained in the introductory material that was given to the participants along 
with instructions on how to use the model. Details of the model were accessible to the 
participants only after the experiment had started. The introductory material also 
explained DesignSpace, which provided information on inconsistencies as soon as they 
occurred. 

The participants in the experiment had to change the property value of the grasping 
distance of a robot from 2 m to 3 m and clear all the inconsistencies resulting from this 
change. As previously mentioned, properties were shared between models. Thus, a 
change in an output property required changes in the corresponding input properties (and 
subsequent properties) to maintain consistency. The grasping distance had to be changed 
in the requirements model, which affected all other files. The time allocated for the 
completion of this task, which required 17 correct changes across 4 Excel files, was 30 
minutes. 

The names of the properties used within the models were similar in some, but not in 
all, cases – reflecting realistic situations where naming conventions cannot be trusted 
fully. Hence, it was not sufficient to merely ensure that all the properties with the same 



   

 

   

   
 

   

   

 

   

   184 A. Sadlauer et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

name had the same values. All calculations were done automatically within the Excel 
files. The only changes to be made by the participants were to manually enter the 
property values calculated within one file into another file if value changes were 
necessary. As soon as DesignSpace detected an inconsistency in the equality links, a red 
flag indicated an inconsistency. Figure 4 shows a view of DesignSpace’s workbench used 
in the experiment. The trace link view in the upper half of Figure 4 indicates changes in 
connected properties by yellow highlighting. Inconsistencies are shown in the bottom. By 
clicking on these artefacts, more information is revealed. 

In a test run, a test person randomly changed properties in the hope of guessing 
correct values. To avoid such behaviour, cells not intended to be changed were locked 
(write-protected). This protection was not visible to the participants unless they sought to 
change a locked cell. Properties that were allowed to be changed were indicated by a light 
blue colour in the cell to their left. 

After the experiment, the participants were asked to complete a questionnaire to 
assess goal awareness. All participants were told that the task was to evaluate 
DesignSpace in practice. The participants were unaware of the other goal, which was to 
evaluate the effects of the two different visualisations of the model interconnections. The 
intent was to ensure that the participants had no bias as to either visualisation style. 

The experiment was performed on a computer with an Intel(R) Core(TM) i5 CPU 650 
@ 3.20 GHz and 4 GB RAM using the Windows 7 Professional 64-Bit operating system. 
The working files were created and used with Excel 2010. DesignSpace software was a 
prototype without release number. A current version of the prototype of DesignSpace is 
available at http://isse.jku.at/tools/dsspc/xadr.zip (pw: dsisse). 

5 Results 

5.1 Measured data 

This section presents the results of the design experiment. To support the hypothesis, it 
was expected that the usage of the matrix representation would already provide 
significantly better results (based on the calculated combined time value) than the 
representation with the node-link graph. 

The solution strategies which the participants applied were identified and categorised 
through analysis of the video recordings of each participant. Participants’ usage of the 
information sources varied, as three different solution strategies were observed: The first 
and intended solution strategy with respect to the hypothesis was to use DesignSpace 
solely as an information source for inconsistencies and the graphical representation of the 
system for identifying the interdependencies for the propagation of changes (see top of 
Figure 5). 

The second approach we observed was to access detailed information about the task 
through DesignSpace. When an inconsistency showed up with a red flag, the name of the 
properties causing the inconsistency could be retrieved by two mouse-clicks at the right 
position. Even though the filename was not provided, this information still narrowed 
down the search considerably. This solution approach was not foreseen. DesignSpace 
allowed identification of properties via the names used in the equivalence connections. 
While this could have been avoided by using random names, it would have made creating 
the interconnections in WorkBench significantly more complicated. The participants 
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were not informed about the additional information within DesignSpace, but about the 
possibility to explore DesignSpace (see middle of Figure 5). 

The third approach was to compare the property values and change them under the 
assumption that values that were initially identical should remain identical. In 
combination with the inconsistency flags of DesignSpace, this strategy also allowed the 
completion of the task. This last approach was used only by two participants and was 
identified in the discussion following the experiment (see bottom of Figure 5) 

All participants used the intended solution approach at least to some degree. 
Interestingly, the implicit requirement that units of properties which must have identical 
values must also be identical (see also Coatanéa et al., 2014) was not recognised or used 
by any of the participants. 

Distinguishing between the three different approaches proved difficult in the video 
analysis. To have clear boundaries, we proceeded as follows: Whenever the participants 
bowed their heads to study the visual representation of the system interconnection, the 
corresponding time was assigned to graph or matrix support. When the participants 
accessed the details of DesignSpace, time was assigned to DesignSpace. Whenever the 
mouse cursor was over DesignSpace showing solely inconsistency information, this time 
was assigned to use of DesignSpace for inconsistency information. Other behaviors, such 
as taking notes, were not assigned to any of the three behaviors of interest. 

Figure 5 Observed solution strategies (see online version for colours) 

 

As no eye-tracking technology was applied, there is some uncertainty regarding the usage 
of the specific support measures. It cannot be guaranteed that the position of the mouse 
actually reflected a participant’s area of interest. It is possible that a participant had the 
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mouse cursor over DesignSpace but was actually looking at the values in the Excel files. 
However, we feel confident that our observations were mostly accurate – in part since our 
findings reflect subsequent discussion with participants. Since complete assignment of all 
activities shown in the video recordings was not possible, the sum of the respective ratios 
can be below the maximum of 1. Using DesignSpace for detailed information required 
interaction with the mouse cursor. Figure 6 shows the combined result on the X-axis and 
the respective usage ratios on the Y-axis. 

Figure 6 Ratios of support measures over the combined results (see online version for colours) 

  

  

5.2 Data analysis 

Statistical analysis was applied to help to identify potential tendencies for future research. 
All statistical analyses were performed with RStudio (version 0.98.1028) using R 
(version 3.1.1, 2014-07-10). 

Of the 20 participants considered for evaluation, 15 used DesignSpace for more than 
10% of the time available. To evaluate this result in more detail, a future experiment 
should apply eye-tracking technology in order to identify which aspect of the 
representation is used. This result is taken as an indication that the tool is generally 
acceptable in an engineering environment. 

All recorded data were analysed to identify correlations. No item of personal data 
showed a significant correlation with the results. The main finding was that the ratio of 
detail usage is significantly correlated with the combined result (Pearson’s correlation 
coefficient of –0.503, statistically significant at 0.05 level). Thus, the detailed information 
provided within DesignSpace clearly showed a statistically significant positive influence 
on the results. 
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An interesting and unexpected observation was that, in the course of the experiment, 
contrary to the goal of the supervisors of the experiment, the participants started to use 
the details of DesignSpace increasingly as an information source (Kendall’s tau of  
–0.627, statistically significant at 0.001 level). We expected that this could be explained 
by age and greater work experience. However, independently, age and work experience 
did not show any significant correlation with the combined results or detail use of 
DesignSpace. We tend to rule out an unintentional influence of the supervisor of the 
experiment towards the detail use of DesignSpace as it was not in line with the 
experiment hypothesis. In addition, the data was only analysed after the experiment, 
which allows us to rule out result awareness of the detail use of DesignSpace to the 
supervisor, who did not observe the participants in detail, but just controlled the 
experiment environment. The correlation likely is coincidental and the participants just 
used the medium they found the most useful. Nevertheless, this result is vulnerable to 
outliers, (Figure 6, bottom right) due to the small sample size and requires further 
investigation for validation. The correlation coefficient between combined results and 
order of participants was not statistically significant (Kendall’s tau of –0.292). 

Both the material and the supervisor of the experiment mentioned that the purpose of 
the experiment was to evaluate DesignSpace in practice. This could have introduced a 
potential bias (Cash et al., 2012) towards DesignSpace. 

The initial hypothesis that a matrix representation provides a higher success rate than 
a node-link graph could not be verified with the experiment. Neither of the two 
visualisations proved superior. Hence, our hypothesis must be rejected. However, the 
experiment showed that the online usage of detailed information provided by 
DesignSpace resulted in higher success rate. While this was not the subject of the study, 
it appears that ready availability to design knowledge is more important than any 
particular offline visualisation style in particular. This assumption requires further study. 
Of the observed variables, only the detail usage of the information provided within 
DesignSpace shows a statistically significant influence. 

5.3 Threats to validity 

The colour indication which cells were allowed to be changed constitutes a threat to 
validity. Obviously, in a real-world scenario, such indications are not available, although 
research exists which aims to provide them. In general, a change task comprises  
two steps: identifying which properties need to be changed (the where) and how these 
need to be changed (the how). In our experimental setup, the where was to some extent 
already answered due to the light-blue highlighting. However, this highlighting did not 
inform the participants about the interdependencies between the properties, which were 
presented by the two visualisations and DesignSpace. The colour highlighting only 
served as a hint within the Excel sheets. 

Considering the surprisingly small success rate – only 11 of the 20 participants 
completed the task – it can be argued that the task was sufficiently difficult and that the 
explanations may have been deficient. Furthermore, the participants did not know the 
robot model and had to perform the task under time pressure. Both these boundary 
conditions are not necessarily found in a real-world scenario. 

Despite the colour indication, the participants still needed to find a feasible way of 
performing the assigned task (the how). Overall, there were 82 possible property values. 
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Depending on the sub-model under consideration, the numbers of options were 39, 42, 48 
and 73, respectively. Therefore, we can conclude that, although the highlighting was 
present, the task was sufficiently difficult for the participants, and the validity of our 
results is not diminished. 

5.4 Future changes and improvements 

After the experiment, the participants had the opportunity to discuss the answers to the 
questionnaire and their overall experience with the experiment with the supervisors of the 
experiment. The general consensus was positive, the risk of seeking to please the 
experimenter notwithstanding. However, in addition to the positive feedback regarding 
DesignSpace, there was important feedback on the presentation of the information. The 
participants would have preferred the inconsistencies to be presented interactively. 
Currently, the inconsistency information is not directly linked to the user interface of the 
software where the specific models are implemented. Such an inclusion would 
significantly improve usability. In addition, some participants expressed the wish for the 
inconsistency information to be highlighted in the general visualisation. 

This wish for more specific representation of inconsistency information also reflects 
the outcome of the experiment in relation to the positive effect of the detailed and 
specific information on performance. The participants performed better when using the 
detail information provided in DesignSpace. With increasing user experience, the 
handling is expected to improve. Ideally, an inconsistency can be presented either in the 
native environment of the specific model or in the form of a graphical visualisation of the 
overall system model with the option to indicate both the specific models and the specific 
properties affected. 

Further improvements include better usability of WorkBench for industrial use. The 
current prototype must be improved in terms of robustness and stability. For optimal 
usage, WorkBench has to be included in the engineering process to reduce complexity for 
the system architect. An enhancement currently under consideration is to provide 
information on how to overcome and solve an inconsistency beyond the trivial solution of 
changing one of the two properties causing it. Further, we are planning to incorporate 
aspects of change propagation in the inconsistency management. 

In addition to the tool adapter for Excel, DesignSpace already features tool adapters 
for E-Plan, Creo, Rational Software Architect and Eclipse. These are being used in 
industrial and academic test applications, and further adaptations are in planning. 

6 Conclusions 

The initial hypothesis that in case of indication of inconsistencies, matrix representation 
of interconnections result in a shorter time necessary to solve the task in comparison to 
node-link representations of interconnections, was not verified with the experiment. 
However, the experiment showed that online, on-demand access to design knowledge 
through DesignSpace successfully supported engineers in identifying inconsistencies 
across domains. The information provided about inconsistencies is acceptable to 
engineers, and the detailed information on model interconnections and inconsistencies 
improved their performance when executing engineering changes. 
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While this paper supports and validates practical effectiveness of DesignSpace, it also 
reveals critical areas for improvement. In the experiment, specific information about 
inconsistencies provided more useful support than general information about system 
interconnections, independent of the type of representation. 
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